Suspension settings for optimal ride comfort of off-road vehicles travelling on roads with different roughness and speeds

نویسندگان

  • P. E. Uys
  • M. Thoresson
چکیده

This paper reports on an investigation to determine the spring and damper settings that will ensure optimal ride comfort of an off-road vehicle, on different road profiles and at different speeds. These settings are required for the design of a four stage semi-active hydro-pneumatic spring damper suspension system (4S4). Spring and damper settings in the 4S4 can be set either to the ride mode or the handling mode and therefore a compromise ride-handling suspension is avoided. The extent to which the ride comfort optimal suspension settings vary for roads of different roughness and varying speeds and the levels of ride comfort that can be achieved, are addressed. The issues of the best objective function to be used when optimising and if a single road profile and speed can be used as representative conditions for ride comfort optimisation of semi-active suspensions, are dealt with. Optimisation is performed with the Dynamic-Q algorithm on a Land Rover Defender 110 modelled in MSC.ADAMS software for speeds ranging from 10 to 50 km/h. It is found that optimising for a combined driver plus rear passenger seat weighted root mean square vertical acceleration rather than using driver or passenger values only, returns the best results. Results indicate that optimisation of suspension settings using one road and speed will improve ride comfort on the same road at different speeds. These settings will also improve ride comfort for other roads at the optimisation speed and other speeds, although not as much as when optimisation has been done for the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of a Constrained Nonlinear Controller using Firefly Algorithm for Active Suspension System

Active vehicle suspension system is designed to increase the ride comfort and road holding of vehicles. Due to limitations in the external force produced by actuator, the design problem encounters the constraint on the control input. In this paper, a novel nonlinear controller with the input constraint is designed for the active suspension system. In the proposed method, at first, a constrained...

متن کامل

Modelling and Test Verification of Suspension Optimal Damping Ratio for Electric Vehicles Considering Occupant-cushion and In-wheel Motor Effects

The damping ratio of chassis suspension is a key parameter for damping matching of in-wheel motor vehicles (IWMVs). Because the motor is attached to the driving wheel, the initial design method of the damping ratio for traditional cars is not entirely suitable for IWMVs. This paper proposes an innovative initial design method of the damping ratio for IWMVs. Firstly, a traveling vibration model ...

متن کامل

Active Suspension vibration control using Linear H-Infinity and optimal control

In this paper, the 1/4 vehicle model have been simulated. The vehicle body acceleration using optimal control has been optimized. The vehicle ride comfort is achieved by using robust control, and it has been compared with optimal control. The active suspension can help the vehicle to have a good dynamic behavioral. In this paper, two degrees of freedom dynamic vibration model of a general ve...

متن کامل

Vibration analysis of an experimental suspension system using artificial neural networks

This study analyzes effects of vibrations on comfort and road holding capability of vehicles as observed in variations of suspension springs, road roughness etc. Also, design of non-linear experimental car suspension system for ride qualities using neural networks is presented. Proposed active suspension system has been found more effective in vibration isolation of car body than linear active ...

متن کامل

Stability investigation of hydraulic interconnected suspension system of a vehicle with a quaternion neural network controller

Using hydraulic interconnected suspension (HIS) system to improve the stability of the vehicles is a matter of recent interest of many scholars. In this paper, application of this kind of suspension system and its impact on the stability of the vehicle are studied. The governing dynamic relations of the system are presented, using free body diagram, Newton-Euler motion equations, and relations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007